#### Practice 15 - 16

#### **Sketching Quadratic Functions**

Use the vertex and intercepts to sketch the graph of the quadratic function.

1) 
$$y + 2 = (x + 4)^2$$

2) 
$$f(x) = 4(x - 6)^2 + 4$$

3) 
$$f(x) = 1 - (x - 1)^2$$

4) 
$$f(x) = x^2 + 2x - 8$$

5) 
$$f(x) = -x^2 - 2x + 8$$

6) 
$$f(x) = -4x + 3 + x^2$$

Determine whether the given quadratic function has a minimum value or maximum value. Then find the coordinates of the minimum or maximum point.

7) 
$$f(x) = 2x^2 - 2x - 8$$

A) minimum; 
$$\left(\frac{1}{2}, -\frac{17}{2}\right)$$

B) minimum; 
$$\left(-\frac{17}{2}, \frac{1}{2}\right)$$

8) 
$$f(x) = -4x^2 - 12x$$

A) minimum; 
$$\left(\frac{3}{2}, -9\right)$$

B) maximum; 
$$\left[-\frac{3}{2}, 9\right]$$

Solve the problem.

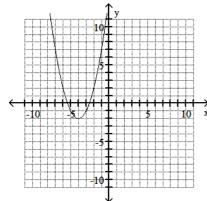
9) A developer wants to enclose a rectangular grassy lot that borders a city street for parking. If the developer has 300 feet of fencing and does not fence the side along the street, what is the largest area that can be enclosed?



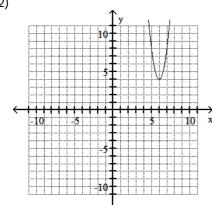
- A) 16.875 ft<sup>2</sup>
- B) 22.500 ft<sup>2</sup>
- C) 5.625 ft<sup>2</sup>
- D) 11,250 ft<sup>2</sup>
- 10) The cost in millions of dollars for a company to manufacture x thousand automobiles is given by the function  $C(x) = 4x^2 32x + 128$ . Find the number of automobiles that must be produced to minimize the cost.



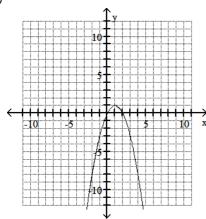
A) 4 thousand automobiles


B) 8 thousand automobiles

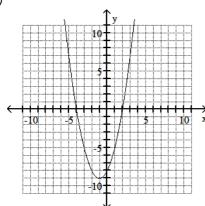
C) 16 thousand automobiles


- D) 64 thousand automobiles
- 11) The profit that the vendor makes per day by selling x pretzels is given by the function  $P(x) = -0.002x^2 + 1.4x 400$ . Find the number of pretzels that must be sold to maximize profit.
- 11)

- A) 700 pretzels
- B) 350 pretzels
- C) 0.7 pretzels
- D) -155 pretzels

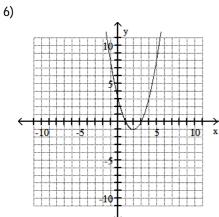






# 2)



# 3)








### 5)





- 7) A 8) B 9) D

- 10) A
- 11) B